SHORT COMMUNICATION

Some new 5,10-dihydrophenazastannine derivatives. The novel conversion of $\mathbf{5 , 1 0 , 1 0}$ trimethyl-5,10-dihydrophenazastannines into their phosphorus(III) analogs

Only three 5,10-dihydrophenazastannine derivatives (I), (II), and (III) have previously been reported. They were prepared by allowing the $2,2^{\prime}$-dilithio derivative

(I) $(\mathrm{R}=\mathrm{H})$
(II) $(\mathrm{R}=\mathrm{Br})$

(III)
of the appropriate N -ethyl-2,2'-dibromodiphenylamine to react with diphenyltin dichloride or stannic chloride. We have used this synthetic method to prepare [except for (X)] the compounds in Tables 1 and 2, and we wish to report on some of their chemical transformations.

It was found that (VIII) and (XIII) could be converted into (X) by reaction with stannic chloride in refluxing xylene (63% and 68% yield, respectively). With (XIII), only (X) was obtained, whereas with (VIII), dimethyltin dichloride (46% yield) was also obtained. These reactions are not unexpected since it is well known that stannic chloride reacts with compounds of the type $\mathrm{R}_{4} \mathrm{Sn}$ to give compounds of the type $\mathrm{R}_{2} \mathrm{SnCl}_{2}{ }^{3}$. Furthermore, this reaction has been employed in the tin heterocycle field by Kuivila and Beumel ${ }^{4}$. The preparation of (X) enabled the synthesis of compounds (VIII) and (IX) by another route. The reaction of (X) with methylmagnesium bromide or methyllithium gave (VIII) (75% and 47% yield, respectively). The reaction of (X) with phenylmagnesium bromide or phenyllithium gave (IX) (92\% and 47% yield, respectively).

The reaction of (VIII) with stannic chloride to give (X) and dimethyltin dichloride suggested that compounds (IV), (VI), and (VIII) might be converted into heterocyclic analogs by reaction with compounds containing bonds which are known to cleave $\mathrm{R}_{4} \mathrm{Sn}$ compounds to give organotin halides. Recently, the conversion of cyclic esters of silicon into their phosphorus(III) and phosphorus(V) analogs in one step ${ }^{5}$ and the conversion of silicon and germanium imidazolidines into their phosphorus(V) analogs in one step ${ }^{6}$ were described. The ability of phosphorus(III) bromide to cleave $\mathrm{R}_{4} \mathrm{Sn}$ compounds ${ }^{7}$ suggested that compounds (IV), (VI), and (VIII) might be converted into their phosphorus(III) analogs by reaction with phenyldichlorophosphine. This was found to be the case. The reaction of (IV) with phenyldi-
TABLE 1
5-METHYL-10,10-DIORGANO-5,10-DIHYDROPHENAZASTANNINES

No.	R	\boldsymbol{R}^{\prime}	M.p. $\left.{ }^{(} \mathrm{C}\right)$	Yield (\%)	Calcd. (\%)				Found (\%)				Mol.wt.		
					C	H	N	$S n$	C	H	N	$S n$	Calcd.	Found	
														Rast	Thermoelectric ${ }^{\text {a }}$
(IV)	H	CH_{3}	133-134 ${ }^{\text {b }}$	51	54,59	5.19	4.25	35.97	54.64	5.27	4.32	35.24	329.99	326	301
(V)	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	148.5-150	52	66.12	4.66	3.09	26.14	66.03	4.39	3.35	25,51	454.13	432	359
(VI)	CH_{3}	CH_{3}	119-120	63	57.02	5.91	3.91	33,15	57.01	6.10	3.82	33.05	358.05	354	323
(VII)	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	146-148 ${ }^{\text {d }}$	34	67.25	5.23	2.91	24,62	67.11	5.33	2.91	24.26	482.18	366	404
(VIII)	Br .	CH_{3}	122-123 ${ }^{\text {d }}$	73	36.93	3.10	2.87	24.33	36.93	2.90	3.16	23.23	487.80	498	502
(IX)	Br	$\mathrm{C}_{6} \mathrm{H}_{5}$	191-193	26	49.07	3.13	2.29	19.40	49.23	3.29	2.36	18.97	611.90	f	600
(X)	Br	Cl	164.5-166.50	$63^{h}, 68^{1}$	29.54	1.72	2.65	22.45	29.66	1.71	2.83	21.79	528.67	f	782

${ }^{a}$ Determined in 2-butanone, ${ }^{b}$ Recryst. from n-hexane/ethyl acetate. ${ }^{6}$ Recryst. From ethyl acetate, ${ }^{\text {d }}$ Recryst, from n-hexane, ${ }^{\text {© Recryst. from n-hexane/dieihyl ether, }}$ ${ }^{5}$ Not determined. ${ }^{9}$ Recryst. from benzene/petroleum cther (b.p. $30-60^{\circ}$), ${ }^{h}$ From (VIII) and stannic chloride. 'From (XIII) and stannic chloride.
TABLE 2
5, 5^{\prime}-DIMETHYL-10, 10^{\prime}-SPIROB(5,10 -DIHYDROPHENAZASTANNINE)S

No.	R	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yicld (\%)	Calcd. (\%)				Found (\%)				Mol.wt.		
				C	H	N	Sn	C	H	N	$S n$	Calcd.	Found	
													Rast	Thermoelectric ${ }^{\text {a }}$
(XI)	H	164-166 ${ }^{\text {b }}$	49	64.90	4.61	5.82	24.67	64.82	4.82	5.66	23.39	481.15	360	${ }^{-}$
(XII)	CH_{3}	209-211 ${ }^{\text {d }}$	78	67.06	5.63	5.22	22.09	67.23	5.60	5.29	22.19	537.26	527	468
(XIII)	Br	259-260	77	39.19	2.28	3.52	14.89	39.32	2.12	3.48	14.45	796.78	780	800

${ }^{a}$ Determined in 2-butanonc. "Recryst. from n-hexane/methylene chloride, " Not determined because of insolubility. ${ }^{\text {N }}$ Recryst. from n-hexane: ${ }^{*}$ Recrystallized from ethyl acetate.
chlorophosphine at $180-210^{\circ}$ gave the known compounds, dimethyltin dichloride and 5 -methyl-10-phenyl-5,10-dihydrophenophosphazine (59% yield). The latter compound was originally prepared by allowing phenyldichlorophosphine to react with N-methyl-2,2'-dilithiodiphenylamine ${ }^{8}$. Similarly, (VI) and (VIII) gave the new compounds, 2,5,8-trimethyl-10-phenyl-5,10-dihydrophenophosphazine (36% yield) and 2,8 -dibromo- 5 -methyl-10-phenyl-5,10-dihydrophenophosphazine (55% yield), respectively. The latter two compounds were identical in every respect to samples obtained by allowing phenyldichlorophosphine to react with the appropriate N -methyl-2,2'-dilithiodiphenylamine.

Infrared, far infrared, ultraviolet, and NMR data for all of the new compounds are presented in the experimental section.

Experimental

Melting points were determined with a Mel-Temp capillary melting point apparatus and are uncorrected. All reactions were carried out in an atmosphere of prepurified nitrogen. Elemental analyses and Rast molecular weight determinations were performed by Dr. G. Weiler and Dr. F. Strauss, Microanalytical Laboratory, Oxford, England. Tin analyses and thermoelectric molecular weight determinations (carried out at 37° by the method of Tomlinson ${ }^{9}$) were performed by Schwarzkopf Microanalytical Laboratory, Woodside 77, N.Y. The infrared data were obtained using KBr pellets with a Beckman IR 8 infrared spectrophotometer. The far-infrared date were obtained using KBr pellets with a Perkin-Elmer Model 21 double beam infrared spectrophotometer which was fitted with a cesium bromide prism and purged with nitrogen. The ultraviolet data were obtained with a Bausch and Lomb Spectronic 505 spectrophotometer using chloroform as solvent. The NMR spectra were determined with a Varian Model A-60 NMR spectrometer using deuteriochloroform as solvent and tetramethylsilane as the internal standard. Except for (X), the procedure for preparing the compounds in Tables 1 and 2 was essentially the same as that described in detail for (IV).

5,10,10-Trimethyl-5,10-dihydrophenazastannine (IV). To a solution of 10.0 g (0.0293 mole) of N -methyl-2,2'-dibromodiphenylamine ${ }^{8,10}$ in 100 ml of diethyl ether at 0° was added a n-hexane solution of n-butyllithium ($86 \mathrm{ml}, 0.059$ mole), and the mixture was stirred at 0° for 1 h after which 6.27 g (0.0293 mole) of dimethyltin dichloride in 50 ml of diethyl ether was added. The mixture was stirred at 25° for 24 h after which the solvent was removed in vacuo, toluene (200 ml) was added, and the mixture was refluxed for 4 h after which it was poured into ice/water. The organic layer was separated, and the water layer was extracted with two $50-\mathrm{ml}$ portions of diethyl ether. Hydroquinone (500 mg) was added to the combined organic layers which were dried and then distilled in vacuo leaving an oil which afforded upon recrystallization from ethyl acetate $4.17 \mathrm{~g}(48 \%)$ of (IV), m.p. $129-132^{\circ}$. Repeated recrystallizations from n-hexane/ethyl acetate gave the anaiytical sample, m.p. 133$134^{\circ}$; IR: 12.99μ (1,2-disubstitution); far IR: 16.45, 17.25, 18.60, 19.15, 22.39, and 25.08μ; NMR: $\tau 9.53\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right], 6.60$ (singlet, $\left.\mathrm{NCH}_{3}\right)$ and 2.5-3.2 (multiplet, aromatic CH) ; ratio of aliphatic/aromatic protons, 1.23 (theoretical, 1.13); UV: 242 $\mathrm{m} \mu(\varepsilon 6770)$ and $283 \mathrm{~m} \mu(\varepsilon 10,100)$.

In another ran the yield was 51%.
(V). IR : 13.03 and 14.31μ (1,2-disubstitution, monosubstitution); far IR : 16.54,
17.34, 19.64, 22.46, and 25.64μ; NMR : $\tau 6.59$ (singlet, NCH_{3}) and 2.2-3.1 (multiplet, aromatic CH); ratio of aromatic/aliphatic protons, 5.82 (theoretical, 6.0); UV : $243 \mathrm{~m} \mu$ ($\varepsilon 7280$) and $284 \mathrm{~m} \mu(\varepsilon 10,200)$.
(VI). $\mathbb{R}: 11.40$ and 12.12μ (1,2,4-trisubstitution); far $\mathbb{R}: 15.39,17.44,18.79$, 19.24, 22.28, 23.93, 25.17, 28.82, and 29.90μ; NMR : $\tau 9.55\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right], 7.73$ (singlet, CCH_{3}), 6.66 (singlet, NCH_{3}), and 2.7-3.0 (multiplet, aromatic CH); ratio of aliphatic/ aromatic protons, 2.47 (theoretical, 2.5); UV: $240 \mathrm{~m} \mu(\varepsilon 5600), 280 \mathrm{~m} \mu(\varepsilon 7930)$, and $320 \mathrm{~m} \mu(\varepsilon 2560)$.
(VII). IR: 11.30 and $12.14 \mu(1,2,4$-trisubstitution) and 14.32μ (monosubstitution); far IR: $15.24,17.39,19.39,22.98,23.53$, and 29.72μ; NMR: $\tau 7.79$ (singlet, CCH_{3}), 6.65 (singlet, NCH_{3}), and 2.3-3.2 (multiplet, aromatic CH); ratio of aromatic/ aliphatic protons, 1.94 (theoretical, 1.78); UV: $244 \mathrm{~m} \mu(\varepsilon 7300), 283 \mathrm{~m} \mu(\varepsilon 9510)$, and $325 \mathrm{~m} \mu(\varepsilon 3100)$.
(VIII). IR : 11.35 and $12.19 \mu(1,2,4$-trisubstitution); far IR : 15.67, 17.34, 18.80, 19.31, 20.88, and 22.33μ; NMR : $\tau 9.53\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right], 6.70$ (singlet, $\left.\mathrm{NCH}_{3}\right)$, and 2.5-3.2 (multiplet, aromatic CH); ratio of aliphatic/aromatic protons, 1.41 (theoretical, 1.50); UV : $243 \mathrm{~m} \mu(\varepsilon 7810)$ and $290 \mathrm{~m} \mu(\varepsilon 16,200)$.
(IX). IR : 11.20 and 12.20μ (1,2,4-trisubstitution) and 14.34μ (monosubstitution) ; far IR: $15.37,15.70,17.36,19.28,21.12,22.37,22.80$, and 23.21μ; NMR: τ 6.67 (singlet, NCH_{3}) and 2.4-3.0 (multiplet, aromatic CH); ratio of aromatic/aliphatic protons, 5.50 (theoretical, 5.33); UV: $243 \mathrm{~m} \mu(\varepsilon 19,400)$ and $290 \mathrm{~m} \mu(\varepsilon 24,500)$.

2,8-Dibromo-5-methyl-10,10-dichlorophenazastannine (X). From (XIII) and stannic chloride. A mixture of (XIII) $(20.0 \mathrm{~g}, 0.025 \mathrm{~mole})$, stannic chloride (6.54 g , 0.025 mole), and p-xylene (25 mI) was refluxed for 3 h after which the p-xylene was removed in vacuo, and the residue was extracted with benzene. The benzene solution was concentrated, and the solid which separated was removed by filtration and discarded. Petroleum ether (b.p. $30-60^{\circ}$) was slowly added to the hot filtrate, and the crystals which separated were collected on a filter to give 16.6 g of solid, m.p. 166-169 ${ }^{\circ}$. Recrystallization from benzene/petroleum ether (b.p. $30-60^{\circ}$) gave $15.0 \mathrm{~g}(57 \%$) of (X), m.p. 165-167 ${ }^{\circ}$. Repeated recrystallizations from benzene/petroleum ether (b.p. $30-60^{\circ}$) gave the analytical sample, m.p. $164.5-166.5^{\circ}$; IR : 11.47 and $12.13 \mu(1,2,4$ trisubstitution); far IR: 15.61, 17.36, 19.38, 21.18, 22.97, 27.12, and 28.05μ; NMR: $\tau 6.60$ (singlet, NCH_{3}) and 2.2-3.0 (multiplet, aromatic CH); ratio of aromatic/aliphatic protons, 2.12 (theoretical, 2.0); UV: $243 \mathrm{~m} \mu(\varepsilon 14,500), 283 \mathrm{~m} \mu(\varepsilon 18,500)$ and $350 \mathrm{~m} \mu(\varepsilon 5820)$. In another run the yield was 68%.

From (VIII) and stannic chloride. A mixture of (VIII) ($4.0 \mathrm{~g}, 0.0082 \mathrm{~mole}$), stannic chloride ($2.13 \mathrm{~g}, 0.0082 \mathrm{~mole}$), and p-xylene (10 ml) was refluxed for 3 h after which the p-xylene was distilled in vacuo. The oil bath temperature was then raised to 195°, and the residue was distilled in vacuo to give $0.87 \mathrm{~g}(46 \%)$ of dimethyltin dichloride, m.p. $104-106^{\circ}$, no depression on admixture with an authentic sample, infrared spectrum superimposable on that of an authentic sample.

The residue was extracted with 50 ml of benzene, petroleum ether (b.p. 30-60 ${ }^{\circ}$) was added, and the solution was cooled to give $2.72 \mathrm{~g}(63 \%)$ of (X), m.p. 163-165 , no depression on admixture with a sample obtained from XIII.
(XI). IR : 13.00μ (1,2-disubstitution); far IR : 15.15, 16.55, 17.35, 19.30, 19.75, 22.64, and 25.33μ; NMR: $\tau 6.45$ (singlet, NCH_{3}) and 2.5-3.0 (multiplet, aromatic CH): ratio of aromatic/aliphatic protons, 2.85 (theoretical, 2.68); UV: $243 \mathrm{~m} \mu(\varepsilon$
9140), $285 \mathrm{~m} \mu(\varepsilon 12,000)$, and $324 \mathrm{~m} \mu(\varepsilon 4970)$.
(XII). IR : 11.32 and 12.24μ (1,2,4-trisubstitution); far IR : 15.39, 17.44, 18.34, $19.39,22.43,27.17$, and $29.17 \mu: \mathrm{NMR}: \tau 7.79$ (singlet, CCH_{3}), 6.54 (singlet, NCH_{3}), and 2.2-3.2 (multiplet, aromatic CH); ratio of aromatic/aliphatic protons, 1.56 (theoretical, 1.50); UV $243 \mathrm{~m} \mu$ ($\varepsilon 9890$), $284 \mathrm{~m} \mu$ ($\varepsilon 11,900$), and $333 \mathrm{~m} \mu(\varepsilon 4620)$.
(XIII). IR : 11.35 and $12.28 \mu(1,2,4$-trisubstitution); far IR : $15.40,17.04,19.09$, 21.08 , and $22.56 \mu ; \mathrm{NMR}: \tau 6.52$ (singlet, NCH_{3}) and 2.5-3.1 (multiplet, aromatic CH) ; ratio of aromatic/aliphatic protons, 2.07 (theoretical, 2.0); UV: $243 \mathrm{~m} \mu(\varepsilon$ $22,500), 290 \mathrm{~m} \mu(\varepsilon 31,800)$, and $335 \mathrm{~m} \mu(\varepsilon 11,200)$.

5-Methyl-10-phenyl-5,10-dihydrophenophosphazine. A mixture of (IV) (1.0 g. 0.003 mole) and phenyldichlorophosphine ($0.54 \mathrm{~g}, 0.003$ mole) was heated at 180° for 2 h . The temperature was raised to 210°, and the mixture was vacuum-distilled (3 mm) to give dimethyltin dichloride, m.p. 105-107 ${ }^{\circ}$, no depression on admixture with an authentic sample.

The residue was stirred with 25 ml of hot benzene, and the mixture was filtered. Removal of the benzene from the filtrate left a solid which was recrystallized from ethanol to give $0.52 \mathrm{~g}\left(59 \%\right.$) of product, m.p. $158-160^{\circ}$ ($\mathrm{lit}^{8} 159-160^{\circ}$), no depression on admixture with an authentic sample, infrared spectrum superimposable on that of an authentic sample; IR : 13.35 and 14.38μ (1,2-disubstitution, monosubstitution); far IR: $15.00,16.49,17.29,18.14,18.79,19.79,20.88,21.78,22.78,24.03,25.57$, and 28.07μ; NMR: $\tau 6.75$ (singlet, NCH_{3}) and 2.1-3.4 (multiplet, aromatic CH); ratio of aromatic/aliphatic protons, 4.42 (theoretical, 4.34); UV: $245 \mathrm{~m} \mu(\varepsilon 16,200), 280 \mathrm{~m} \mu$ ($\varepsilon 14,000$), $308 \mathrm{~m} \mu(\varepsilon 7520)$, and $340 \mathrm{~m} \mu(\varepsilon 6940)$.

2,5,8-Trimethyl-10-phenyl-5,10-dihydrophenophosphazine. A mixture of (VI) ($1.0 \mathrm{~g}, 0.0028$ mole) and phenyldichlorophosphine ($0.5 \mathrm{~g}, 0.0028 \mathrm{~mole}$) was heated at 160° for 2 h . The temperature was raised to 195°, and the mixture was vacuumdistilled (2.5 mm) to give dimethyltin dichloride, m.p. $104-106^{\circ}$. The residue was stirred with 25 ml of hot benzene, and the mixture was filtered. The residue was recrystallized from ethanol to give $0.32 \mathrm{~g}(36 \%)$ of product, m.p. 144-146 ${ }^{\circ}$, no depression on admixture with a sample obtained by allowing N -methyl-2,2'-dilithiodi-ptolylamine ${ }^{11}$ to react with phenyldichlorophosphine. (Found: $\mathrm{C}, 79.42 ; \mathrm{H}, 6.33 ; \mathrm{N}$, 4.59 ; mol. wt. in 2-butanone, 316. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NP}$ calcd. : C, $79.47 ; \mathrm{H}, 6.35 ; \mathrm{N}, 4.41 \%$; mol.wt., 317.37.) IR: $11.10,12.28$, and 12.42μ (1,2,4-trisubstitution) and 14.32μ (monosubstitution); far IR: 16.19, 17.24, 17.79, 18.24, 18.59, 19.74, 20.98, 22.38, 23.38, $25.32,26.32$, and 28.07μ; NMR: $\tau 7.70$ (singlet, CCH_{3}), 6.82 (singlet, NCH_{3}), and 2.4-3.3 (multiplet, aromatic CH) ; ratio of aromatic/aliphatic protons, 1.12 (theoretical, 1.22); UV: $245 \mathrm{~m} \mu(\varepsilon 18,200), 281 \mathrm{~m} \mu(\varepsilon 15,900), 320 \mathrm{~m} \mu(\varepsilon 6880)$, and $348 \mathrm{~m} \mu$ ($\varepsilon 7090$).

2,8-Dibromo-5-methyl-10-phenyl-5,10-dihydrophenophosphazine. A mixture of (VIII) ($10.0 \mathrm{~g}, 0.021$ mole) and phenyldichlorophosphine ($3.67 \mathrm{~g}, 0.021$ mole) was heated at 210° for 2 h and then vacuum distilled (1.5 mm) at 210° to give $2.75 \mathrm{~g}(61 \%)$ of dimethyltin dichloride, m.p. $104-106^{\circ}$. The residue was stirred with 50 ml of hot benzene, and the mixture was filtered. Removal of the benzene from the filtrate left a solid which was recrystallized from ethyl acetate to give $5.0 \mathrm{~g}(55 \%)$ of product, m.p. 227-229 ${ }^{\circ}$, no depression on admixture with a sample obtained by allowing N -methyl-2,2'-dilithio-4,4'-dibromodiphenylamine ${ }^{2,12}$ to react with phenyldichlorophosphine. (Found: C, $51.08 ; \mathrm{H}, 3.25 ; \mathrm{N}, 3.17 ; \mathrm{Br}, 35.65$; mol. wt. in 2-butanone, 466.
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NP}$ calcd. : $\mathrm{C}, 51.04 ; \mathrm{H}, 3.16 ; \mathrm{N}, 3.13 ; \mathrm{Br}, 35.75 \%$; mol. wt., 447.14.) IR : 11.20 and $12.32 \mu(1,2,4$-trisubstitution) and 14.40μ (monosubstitution); far IR : 15.44, $16.54,17.99,18.84,19.94,21.08,21.68,22.78,24.73$, and $27.02 \mu ;$ NMR: $\tau 6.63$ (singlet, NCH_{3}) and 2.1-3.2 (multiplet, aromatic CH); ratio of aromatic/aliphatic protons, 4.14 (theoretical, 3.66); UV : $245 \mathrm{~m} \mu(\varepsilon 28,700), 291 \mathrm{~m} \mu(\varepsilon 35,000), 318 \mathrm{~m} \mu(\varepsilon 16,800)$, $335 \mathrm{~m} \mu(\varepsilon 11,200)$, and $345 \mathrm{~m} \mu(\varepsilon 10,400)$.

Acknowledgement

The authors wish to thank Professor Harold a. Horan for the infrared and ultraviolet spectral data.

Department of Chemistry, St. John's University,
Jamaica, New York 11432 (U.S.A.)

Eugene J. Kupchik

Vincent A Perciaccante

1 H. Gilman and E. A. Zuech, J. Am. Chem. Soc., 82 (1960) 2522.
2 D. Wasserman, R. E. Jones, S. A. Robinson and J. D. Garber, J. Org. Chem., 30 (1965) 3248.
3 K. A. Kocheshkov, Ber., 62 (1929) 996; 66 (1933) 1661.
4 H. G. Kutvila and O. F. Beumel, JR., J. Am. Chem. Soc., 80 (1958) 3250.
5 C. M. Silcox and J. J. Zuckerman, J. Am. Chem. Soc., 88 (1966) 168.
6 C. H. Yoder and J. J. Zuckerman, J. Am. Chem. Soc., 88 (1966) 2170.
7 D. Seyferth, Naturwissenschaften, 44 (1957) 34.
8 G. Baum, H. A. Lloyd and C. Tamborski, J. Org. Chem., 29 (1964) 3410.
9 C. Tomlinson, Mikrochim. Acta, 3 (1961) 457.
10 H. Gllman and E. A. Zuech, J. Org. Chem., 26 (1961) 2013.
11 H. Gllman and E. A. Zuech, J. Org. Chem., 27 (1962) 2897.
12 C. S. Gibson and D. C. Vining, J. Chem. Soc., (1923) 831; K. Fries, Ann. Chem., 346 (1906) 128;
A. E. Erickson, R. J. Tull and W. A. Sklavz, Merck and Co., Inc., Fr.P.1,322,421, Mar. 29, 1963;
U. S. Appl. Mar. 31, 1961.

Received March 13th, 1967

